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Abstract 

Recently Lee et al. in CU-TP-739, h e p -  ~ h / 9 6 0 2 16 7, calculated the asymptotic metric on the 
moduli space of (1, 1 . . . . .  1) BPS monopoles and conjectured that it was globally exact. In this 
paper it is shown that this conjecture is true for the corresponding moduli space of Nahm data. 
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1. I n t r o d u c t i o n  

For some time now there has been considerable interest in the natural hyperkaehler metric 

on the moduli space of  SU (2) monopoles in N 3. It is known from the work of Taubes that a 

monopole near the boundary of  the moduli space of  monopoles of  charge m approximates a 

collection of  rn charge one monopoles. It was argued by Manton [ 16] that the geodesics of  

this metric correspond to scattering of  m slowly moving monopoles. There are now many 

interesting examples of  scattering of  SU (2) monopoles beginning with the calculation of  

the metric on the moduli space of  SU (2) charge two monopoles by Atiyah and Hitchin [1] 

and more recently results on the scattering of  monopoles with special symmetry [8-12]. 

Monopoles also exist for compact groups G other than SU(2). We will be interested 

only in the case of  maximal symmetry breaking. In this case the particles making up the 
monopole come in r distinguishable ' types'  where r is the rank of the group G. The r types 

correspond to the r different elementary ways of  embedding SU(2) into G along simple 
root directions. The magnetic charge of  a G monopole is a vector m = (in I . . . . .  m r) where 
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mi can be thought of as the number of monopoles of type i [17]. If any of the mi vanish, 

the monopole is obtained from an embedded subgroup; so the simplest monopole that is 

genuinely a monopole for G is one with each m i = 1. We are interested in the structure 

of the moduli space for this case and its metric. Note that in general the moduli space 

has dimension 4(ml + . . .  + mr) so that the moduli space of (1, 1 . . . . .  1) monopoles has 

dimension 4r. 

The existence of a hyperkaehler metric on the monopole moduli space is suggested by 

the fact that it can be realised as an infinite-dimensional hyperkaehler quotient. In the case 

of SU(2) Atiyah and Hitchin used analytic results of Taubes to rigourously establish that 

such a metric did indeed exist. In the case of other gauge groups and maximal symmetry 

breaking these results have not been established although they are believed to be true. Most 

work on the metric on the moduli space of monopoles for higher rank gauge groups, instead 

of studying the moduli space directly, has worked with the space of Nahm data. It is known 
[13,19] that the space of Nahm data is diffeomorphic to the monopole moduli space for 

SU(n) monopoles with maximal symmetry breaking. The space of Nahm data can also 

be realised as an infinite-dimensional hyperkaehler quotient and hence one expects it to 

also have a hyperkaehler metric. Moreover, it is conjectured that this metric is the same 

as the monopole metric. For SU(2) this has been proved by Nakajima [18]. We will see 

below that working with the Nahm data has the advantage that for simple cases such as 

(1, 1 . . . . .  1) monopoles we can realise it as afinite-dimensional hyperkaehler quotient and 

a hyperkaehler metric can be rigourously and explicitly constructed. It has the disadvantage, 

of course, that without a generalisation of Nakajima's result, we do not know that the metric 

we have constructed is the monopole metric. 

For the group SU(3) the rank is two and the metric on the moduli space of (1, 1) 

monopoles was studied by Connell [3,4]. The same result was also obtained indepen- 

dently by Gauntlett and Low [5] and Lee et al. [5,14]. In these latter works some special 

assumptions on the values of Higg's field at infinity that simplified the work of Connell are 

removed. The metric obtained is globally of Taub-NUT type. 

For the more general case of an SU(n + 1) monopole of charge (1 . . . . .  1) Lee et al. [15] 

calculate the asymptotic form of the monopole metric and show that it is asymptotically 

Taub-NUT. They then give an argument that the asymptotic form of the metric can be 

smoothly extended to the whole moduli space and they conjecture that the monopole metric 

is indeed exactly this extended metric. In this note I will show that this conjecture is true 

for the metric on the Nahm data of SU(n + 1), (1, 1 . . . . .  1) monopoles. 
After completing this note a preprint appeared in Chalmers [2] that proves more directly 

that the (1 . . . . .  1) monopole moduli space metric is of the type conjectured in [ 15]. 
In summary the paper is as follows: Section 2 reviews the hyperkaehler quotient con- 

struction applied to quaternionic vector spaces. Section 3 describes the infinite-dimensional 

hyperkaehler quotient that defines A/" the moduli space of (1 . . . . .  1) Nahm data and shows 
that it can be realised as a finite-dimensional hyperkaehler quotient. This enables a rigourous 
definition of the metric on.A/" as a hyperkaehler quotient of a finite-dimensional hyperkaehler 

manifold. This is described in Section 4 and in Section 5 it is shown that the moduli space 
is isometric to a product 
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N-  __ R3 x .N'c x R  
/7 ' 

where N'c is the space of  Nahm data corresponding to centred monopoles, and R 3 and R 

are given a multiple of  the standard metric. Finally in Section 6 we consider the metric on 

N'c. The space N'c is just H n-2 where H = ~4 is quaternionic space. In the case of SU (3) it 

is possible to give an explicit formula for the metric on this space [3,4], in the present case 

I use a result of Hitchin [6] to show that it has the same form as the metric in [15]. 

2. Hyperkaehler quotients of vector spaces 

A hyperkaehler manifold [6] is a Riemannian manifold (M, g) with three complex struc- 

tures I ,  J and K which satisfy the quaternion algebra and are covariantly constant. 

We need to consider from [7] the hyperkaehler quotient of  a hyperkaehler manifold by a 

group. For our purposes it is enough to consider the case when the manifold in question is 

a vector space. Let V be a real vector space with three complex structures el = I ,  e2 = J,  

e3 = K which satisfy the quaternion algebra. Assume also that V has an inner product 

( , )  which is preserved by each of  the ei. Then V has three symplectic forms COl defined 

by 09 i (V, W) = (1), eiw). Since the tangent space at any point of  V is canonically identified 

with V itself this makes V a hyperkaehler manifold. 

Assume now that a group G acts freely on V in such a way that V / G  is a manifold and 

V ~ V / G  is a principal G fibration. Assume further that the G action preserves the inner 

product on the tangent spaces of  V and also commutes with the action of  the ei. If ~ is an 

element of  LG, the Lie algebra of  G, it defines a vector field t(~) on V. The moment map 

# • V - - + R 3 ® L G  * 

of this group action is defined as follows. For any ~ E LG and v e V we define/z(v)(~) = 

(/Zl (v)(~), #2(v)(~), /z3(v)(~))  in R 3 by 

1 1 

, k , O , +  = f Wk(t(~)(tv), V) dt 

0 0 

= f ( t (~ ) ( t v ) ,  ek(v)) dt (2.1) 

for each k = 1,2, 3. 

Let V0 = /z - l  (0), then the hyperkaehler quotient of V is the space Vo/G. To see that 

this is a hyperkaehler manifold let zr be the projection Vo --+ Vo/G. If x ~ Vo/G, choose 
2 e r r  - l  (x) C V0. We can split the tangent space at J e V0 into vertical directions tangent 

to the G action and horizontal directions which are orthogonal to the vertical directions. 

The horizontal directions are naturally identified with the tangent space to Vo/G at x and 
this enables us to define an inner product and a hyperkaehler structure on that tangent space. 
This construction is, in fact, independent of  the choice of  :~ in r r -  1 (Jr (x)) because of  the G 

invariance. I refer the reader to [7] for details. 
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3. Moduli space of  Nahm data 

We are interested in S U ( n  + 1) monopoles or more precisely their Nahm data. In the 

interests of  brevity I will not review the theory of  monopoles or the relationship between 

monopoles and solutions of  Nahm's equations but refer the reader to [1] and references 

therein for the SU(2) theory and to [13,17,19] for the S U ( n  + 1) theory. Higg's field at 

infinity of  the monopole has eigenvalues i)~0 . . . . .  i~.n where we assume that 

~-0 < )~1 < " ' '  < ~ 'n- - I  < )~n. 

The fact that these eigenvalues are distinct is called maximal symmetry breaking at infinity. 

Denote by ,A the set of  all pairs (T, a) where T = (T l . . . . .  T n) and each 

T i : [~,i-1, ~,i] ~ 

is a smooth function, and a = (a 1 . . . . .  a n - l )  6 H n- l .  It is useful to think of  the vector 

a = (a I . . . . .  a n - l  ) as a function on the set ()q . . . . .  ~-n-l) whose value at ~.i is just a i . We 

will consider the space A as a left quaternionic vector space. 

Denote by ~ the set of  all g = (gl . . . . .  gn) where each gi is a smooth map 

and 

gi : [ ~ - i - 1 ,  ~.i]  ~ U(1) 

1 : gl(X0) . . . . .  gi(~.i) = gi+l(3.i) . . . . .  gn(Xn) : 1. (3.1) 

The set ~ forms a group under pointwise multiplication. 

The group ~ acts on the right of  ,,4 by 

1 dg j 
( g T ) J  : TJ + i gJ ' (ga)J = a J g J ( x J )  = aJgj+l(~ 'J)"  

We define an inner product on ,~, by 

~-i n - I  

( ( T ' a ) ' ( S ' b ) ) = ~ l f R e ( T i s i ) + Z R e ( a i [ ~ i ) ' ' =  ~.._ i=l 

This inner product makes ~ an (infinite-dimensional) hyperkaehler vector space. We 

want to consider its hyperkaehler quotient. It is easy to check that the group action preserves 

the hyperkaehler structure. It is not clear, because of  the infinite dimensionality, that the 
quotient is nicely behaved. In the next section we shall see that we can avoid this problem by 

replacing A by a finite-dimensional vector space and forming the hyperkaehler quotient of  

that instead. To motivate the choice of  finite-dimensional space let us continue and calculate 
the formal" infinite-dimensional hyperkaehler quotient of  4 .  

To define the moment maps for the action of  ~ we need to consider the infinitesimal action 
of  the Lie algebra L~. The Lie algebra L ~  is the set of  all ~ = (~l . . . . .  ~n) where each 
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is a smooth map. By differentiating 3.1 we see that ~ has to satisfy 

0 = ~ 1 ( ~ . 0 )  . . . . .  ~i(~i) = ~ i + l ( z i )  . . . . .  ~n(~n) = O. 

Of course the image of ~ should be in the Lie algebra of U( I )  but we have identified that 

with •. We fix our conventions for that identification by noting that the exponential map 

for the group ~ is ~ ~ exp(2zri~). 

An element e c LO then defines a vector field t(~) on ..4 whose value at (T, a) is 

t(~)(T, a) = ((2n" d~ 1 . . . . .  2zr d~n), (2rrali~el (~.1) . . . . .  27ran-li~n-I()~n_l)). 

We can now calculate the moment map from 2.1 and we find that (T, a) is in the kernel 

of /z  if and only if 

Re(dT j)  = 0 

for each j -- 1 . . . . .  n and 

Im(T j+l  -- T j) : l aJi{iJ 

for each j = 1 . . . . .  n - 1. 

It is clear from these equations that to describe the hyperkaehler quotient of A by ~ we 

could restrict our attention from A to the subset of  pairs (T, a) where the imaginary part of  

T is constant. If we do that and wish to still have a hyperkaehler structure then we will need 

to restrict attention to T whose real part is also constant. Notice that if we start out with 

a T which is real then by integrating starting at *0 we can construct a g ---- (gl . . . . .  gn) 

such that gT = 0 and satisfying all the conditions to be in G except that we may not have 

g (,kn) : 1. But in that case we can find an h such that dh is constant and h (~-n) = g ( ~ - n )  - 1. 

The product gh is in ~ and gT has constant real part. We conclude that every (T, a) in 

# - l  (0) can be gauge transformed so that gT is constant. 

4. Hyperkaehler quotient 

Denote by ..4 the set of  all pairs (r, a) where r c [H n and a 6 H " - l .  We identify A 

with a subset of  .4 by identifying each rJ with the constant map from [~-j-l, )~j] to ~. We 
shall identify x j = Im(r  j )  E Im(H) with the corresponding element of  R 3 and call it the 

location of the j th  monopole. It follows from the discussion at the end of  Section 2 that the 

hyperkaehler quotient of .A by 0 is the same as the hyperkaehler quotient of .4 by the G, 

the subgroup of  G fixing .4. 
The space A is a qnaternionic vector space and has an inner product induced from .A 

which is 

n / i  

((r, a), (or, b)) ---- Z piRe(ri(ri) + Z Re(ai[~i)' (4.1) 
i=1 i=1  

where pj --- Xj - ~ . j _  1. 
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The group ~ is the group of all g 6 G such that each dgJ is a constant. Such a g can be 

written as 

gJ(s)=exp(2iTr((wJ_ _ _  - WJ)s  + wJ~.j - w J k j _ , ) ~ .  (4.2) 
\ P j  / 

Notice that  gJ (~.j) = exp(2zriW j )  and gj+l (~.j) = exp(2zriW~_) so that condition (3.1) 
for g to be in ~, when applied to a g of the form (4.2) is 

W1 E 27, 

W2_ -- wl+ E 77, 

: (4.3) 

W_ n --  W~ -1  E Z ,  

-W~_ ~ ;7. 

The numbers W j and W j are not uniquely determined by g. They can be changed by adding 
to both of them the same integer. 

Define a group ~ to be the group of all 2n-tuples of real numbers 

((w!, wS,  w:+) . . . . .  (wn, 

satisfying conditions (4.3). Define G to be the quotient of ~ by the subgroup consisting 
of all 2n-tuples of the form ((kl, kl) . . . . .  (kn, kn)) where each of the ki is an integer. We 
identify ~ with its image in the group ~ by the map in (4.2). The group ~ acts on A 
by 

g(r,  a) = (gr, ga), 

where 

(g )J = + 2 " ( y g  - wL), 
Pj 

(ga)  j = a j exp(2~riW~_) = a j exp(27riwJ+l). 
(4.4) 

We identify an element such as (4.5) with the corresponding n -  1 tuple w = (w 1 . . . . .  odn- | ) 
and denote both by w. The vector field t(w) on ,,4 generated by w is 

t(w)(r,  a) = (('t I . . . . .  ./.n), (al . . . . .  a,,-1)) 

where 

Since ~ ~ G is a discrete quotient the Lie algebra of G is the Lie algebra of ~ and hence 
consists of all 2n-tuples of the form 

((1, w l ) ,  (tO 1 , 113 2) . . . . .  (tO n - 2 ,  wn-1),  (w n-1 , 1)). (4.5) 
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.~1 = __2rr (wl )  ' 

Pl 

./.2 = 2zr (wl _ w2), 

P2 

and 

./..n-I __ 2rr (wn_ 2 _ wn_l )  ' 

Pn-1 
./., = __2:r ( _ w n _ l )  

Pn 

aJ : 2yraJiw j. 

The moment m a p / z  for the action of ~ on .A can be calculated from (2.1) but it is the 

restriction of that for ~ on A and hence we deduce that (r ,  a)  c # - I  (0) if and only if 

Im( r J  +1) - I ra(r  J) : laJisJ 

for each j = 1 . . . . .  n - 1. 

Let .,40 = / l  - !  (0) so the moduli  space of  Nahm data is .M = .A0/~. 

5. The  metr ic  on  m o n o p o l e s  

By the Nahm transform [ 13,19] the space A c is diffeomorphic to the space of  monopoles 

of type (1, 1 . . . . .  1). The monopole corresponding to the orbit of (r ,  a)  can be interpreted 

as a collection of n particles, located at each of  the points xJ : I ra ( r  J) with phases 

exp(ipjRe(rJ)). Following [14] we define the centre of r by 

1 n 

rc = P i~l Pi 

where 

i=1 

The centre of  the monopole is then 

1 n 

Xc = P i~l Pi 

We define the space of  centred monopoles, -Ao,c, to be the subset of  .A0 consisting of  those 

(r ,  a)  with rc = 0. Define also 

j= l  



38 M.K. Murray~Journal o f  Geometry and Physics 23 (1997) 31~l  l 

This is the subgroup of  G which fixes A0,c. We define Arc = .Ao,c/Gc. 

We want to define an isomorphism 

,4o ~ A0,c × H. (5.1) 

To construct the isomorphism we first define for any r c 14 the element ~" e H n by 

= (r, r . . . . .  r) .  Notice that ¢'c = r. So given a monopole (r, a) ~ A0 we can centre it 

by defining (r - rc, a) e A0,c. The map in (5.1) is then defined to send (r, a) to the pair 

((r - rc, a), rc) consisting of  the corresponding centred monopole and the centre of  the 
monopole. This map has inverse given by ((r, a), a )  w-~ (r + 6,  a). 

Notice that the isomorphism in (5.1) commutes with the action of  Gc on both spaces. 

Define A~ = A0/~c and Arc -- AO,c/~c. The map in (5.1) also preserves inner products if 
we give H the standard metric multiplied by a factor of  p. Hence, we have an isometry 

. ~ ' ~  Arc x H, 

where H has the usual inner product multiplied by a factor of  p. Finally, notice that 

w'+ - w i = - w ' _  + (w'+ - + . . .  + 

i=1 

is an integer by (4.3). So, gc is the kernel o f a  surjective homomorphism G ~ Z that sends 

g to Y~iL 1 W~_ --  W / and hence ~ /~c  is isomorphic to 77. Noting, from (4.4), that the action 
of  ~c leaves the imaginary part of  r alone we conclude that 

Ar__ R3 x A r c x R  
77 

We now construct the metric on J~c. 

6. The metric on centred monopoles  

If  (r, a) is in .A0,c then the vector x = Im(r )  is determined by the equations X j + l  -- X j = 

( l ) a J i { l J .  So,  (~', a )  is determined by the pair (Re(r),  a). It is straightforward to show that 

the orbit of  (r, a) under Gc contains exactly one pair of  the form (g ,  a ' )  with R e ( g )  = 0. 
It follows that .A{c has the topology of  H n-1 . 

In the case that n = 2 Connell calculated explicitly the hyperkaehler quotient metric on 
H. In the case at hand that calculation is more involved and it is simpler to use an approach 
due to Hitchin [6]. The n - 1 dimensional torus T n-1 = U(1) n-I  acts on the space Arc 
preserving the hyperkaehler metric by rotating each of  the a i . The moment map for the ith 
of these actions is given by #i ('t', a )  = 27r Im(r  i - r i+1 ) for each i = 1 . . . . .  n - 1. This 

action is free if none of  the a j vanish. Let A~, c be the set of  (r, a) such that none of  the a j 

vanish. Denote by M the image of.A~, c in (R 3)n- 1 under the moment map. The moment map 

.A~, c ~ M realises .A~, c as a T n - I  bundle over M. The inner product on .A~, c allows us to 

define a horizontal subspace orthogonal to the T n -  1 action at each point of  .A~, c and hence 
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we can define a connection on A~, c ~ M. This defines a one-form a = (a I . . . . .  ~ n -  1 ) 

corresponding to projecting onto the vertical subspace. By generalising the calculation of 

Hitchin [6, Section IV.4] it is possible to show that the metric on A~,c/GC must have the 
form 

n-I 3 n-I 
g = Z K ~ j l Z  d#a dl~J -t- ~ Kijotiot j (6.1) 

i,j=l a=l i,j=l 

for some matrix valued function Kij which is constant in the torus directions. If r/i are the 

generators of the torus action then Hitchin's result gives 

Kij = g(lli, rlj). 

We now wish to calculate the Kij. 
To calculate the r]i we have to split them into a vector t (~ i )  in the direction of  the •c 

action and an orthogonal vector ~li = 71i - t (~ i ) .  Then we have that 

Kij = gOl i ,  rlj) = (fli ,  ~lj), 

where ( , )  is the inner product defined in (4.1). Using the orthogonality we deduce that 

Ki j  = (rli, rlj) -- (l(~i), rlj). 

The condition that defines the t(~i) is the requirement that ~li - t(~i) be horizontal, that 

is 

(?7i -- l(~i),  l (p))  = 0 

for all p E LGc. Expanding this we have that 

(hi, t(p)) = (~(~i), L(p)). 

The vector r//is 

r/z(r, a) = (0, (0 . . . . .  2~ria t . . . . .  0)) 

and hence we have 

(rll, t ( p ) )  = 4~T2p/baZl 2. 

The other inner product is 

( t (~ l ) , t (p))~-4JT 2 ~k (~k - t  - - ~ k ) ( p k - l - - p k )  - f - 4 ; r 2 Z l a k l 2 ~ k p k  
k = l  k = l  

(~-~ 1 ~k+l) ) =4rr2 _pk ( Z  ( ~ k - I ,  ~k) q_ (~k_ _{_ [ak ]2~k . 
\k=l Pk Pk+l 

(6.2) 

If  we equate each coefficient of  pk in (6.2) to zero we can put the defining condition for 
l(~i) into the following matrix form. We let ~ = (s ek) be a matrix with rows labelled by I 
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and columns labelled by k. We denote by X the diagonal matrix whose lth diagonal entry 
is la l 12. Finally we denote by P the following matrix: 

p = 

1/p + l i p  2 - l i p  2 0 ... 0 0 "~ 
- 1 / p  2 l ip  2 + l / p  3 - l i p  3 ... 0 0 

J 0 - 1 / p  3 l ip  3 + l I p  4 ... 0 0 
• . ° 

• . . . .  

0 0 0 ... l/pn_ 2 + l / p n _  1 -1/pn_ 1 
0 0 0 ... - l / p n _ l  l/pn_l + l/pn 

Then the condition satisfied by ~ becomes the matrix equation 

~(P + X) = X 

and the matrix we are trying to find, K, satisfies 

K = 4zr2(1 - se)X. 

It follows that 

K -  1 _ 1 ( p - 1  + X - l ) .  
4zr 2 

We conclude that the metric on .Arc is of  the form 

n-1 3 n--1 
g = ~ ( p - I  + X - I ) I j  Z dy~ d y ]  +4:rr  2 Z ( p - I  + X-1)~j lo l lo lJ ,  

l , j= l  a=l  l , j= l  
(6.3) 

where yt = x t+l - x I = (1/2Jr)/~ I. 

To finish we want to compare our result (6.3) to formula (7.5) in [ 15]. Except for rescalings 

the only question is to show that their matrix l£ij is the matrix Pi] 1 . To do this we have to 

calculate l £ i j  in the manner they suggest. We reintroduce the centre of  mass co-ordinate xc. 
This means we replace p - l  in (6.3) by /5 -1  where 

 ':Io o)  
Then we consider the effect of  the co-ordinate change from the co-ordinates x i to the 

co-ordinates (xc, y i ) .  This is the result of  applying the linear transformation 

Z = 

Pl/P P2/P P3/P .. .  Pn-1/P P~/1 p )  
1 - 1  0 . . .  0 

0 1 -1  . . .  0 
. . ° . .  " . 

0 0 0 ... 1 

to the co-ordinates X i . Hence the matrix of  the metric in terms of  the co-ordinates X i is given 
by Z t P-  1Z. Let D denote the diagonal matrix with entries Pl . . . . .  Pn. It is straightforward 
to check that Z D - I Z  t = /~ and hence Z t P - l Z  = D. This shows that Z t f i - l z  agrees 
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with the constant  term in Mii in [15] (their m i is our Pi). So, we conclude  that the idij in 

[15] is indeed p/~- l. The  metr ic  on A/'c is therefore the same asymptot ica l ly  as the metr ic  on 

the monopo le  modul i  space calculated in [15]. 
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